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Supplementary Figure 1

Overlap and screening completeness of existing human binary interactome maps.
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(a) Venn diagram depicting the overlap in the number of interactions between CCSB-HI1 (red circle), MDC-HI1 (green circle)

and LC (blue circle). (b) Screening completeness of various search spaces including Space I (CCSB-HI1), Space II (MDC-HI1),

CSS (space common to Space I and Space II). Space depicted in yellow indicates the search space in which repeated screens 

were performed using the Y2H-CCSB technology. (c) Venn diagram depicting the overlap in the number of interactions 

between CCSB-HI1 (red circle), MDC-HI1 (green circle) and LC (blue circle) in the CSS. (d) Venn diagram depicting the

overlap between CCSB-HI1 and MDC-HI1 datasets in the subspace of CSS interrogated by full-length proteins in both

datasets. (e) Network graph of interactions found in the CCSB-HI1 dataset (red lines), the MDC-HI1 dataset (green lines) or 

LC (blue lines) in the CSS. Proteins are depicted as yellow circles and interactions as lines between them.
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Name
Transcription factor 

reconstituted
Host Vector features

Cellular compartment 

where interaction occurs

Gateway 

compatibility
Gene markers used References

Y2H-CCSB
GAL4 transcription 

factor

yeast: Mav103 and 

Mav 203

pDB-dest (bait) and pAD-dest-CYH (prey) vectors: pUC-

based, ARSH4, CEN6 (low copy), constitutive moderate 

ADH1 promoter, N-terminal GAL4-DB and GAL4-AD 

fusions, CYH2 marker on prey vector for counter 

selection of auto-activators  

Nucleus yes HIS3, LacZ, URA3 Vidal et al. 1996

MAPPIT
Type I cytokine 

receptor signal

mammalian cells: 293T 

cells

pSEL (bait) vector: pSVsport-based, constitutive low 

SV40 early promoter, N-terminal chimeric epo/leptin 

receptor fusion; pMG1 (prey vector): pMET7-based, 

constitutive strong SRalpha promoter, N-terminal FLAG-

gp130 domain fusion

Cell membrane yes Luciferase
Eyckerman et al. 

2001

Supplementary Table 2 | Comparison of the features of the two different technologies, Y2H-CCSB and MAPPIT.
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Parameter Mean StandardDeviation 95% CI lower-bound 95% CI upper-bound

Assay-sensitivity related

Assay-sensitivity of Y2H-CCSB (from hsPRS v1 pairs positive in pairwise tests) 17.0% 3.8% 10.3% 25.1%

Assay-sensitivity of Y2H-CCSB (from hsPRS v1 pairs positive in CCSB-HI1) 21.2% 10.5% 9.2% 42.6%

Assay-sensitivity of Y2H-CCSB (from LC-multiple pairs positive in CCSB-HI1) 19.6% 7.9% 13.9% 34.0%

Assay-sensitivity of Y2H-CCSB (combined) 17.9% 4.9% 10.8% 28.3%

Precision-related

Fraction of hsPRS v1 pairs positive in MAPPIT 21.3% 4.2% 13.6% 30.1%

Fraction of Y2H-supported hsPRS v1 pairs positive in MAPPIT 34.1% 7.1% 20.9% 48.6%

Fraction of hsRRS v1 pairs positive in MAPPIT 2.2% 1.1% 0.6% 4.6%

Fraction of LC pairs positive in MAPPIT 8.0% 1.9% 4.5% 12.1%

Fraction of LCI (Single,Y2H,FL) positive in MAPPIT 9.6% 5.2% 2.1% 22.0%

Precision of LC 24.7% 18.7% 0.0% 72.5%

Fraction of MDC-HI1 positive in MAPPIT 9.9% 2.2% 6.0% 14.6%

Fraction of MDC-HI1 (Same,FL) positive in MAPPIT 31.1% 8.1% 16.7% 47.7%

Precision of MDC-HI1 83.5% 18.6% 41.2% 100.0%

Fraction of CCSB-HI1 positive in MAPPIT 27.4% 3.2% 21.3% 33.9%

Precision of CCSB-HI1 79.4% 15.9% 49.4% 100.0%

Sampling False Discovery rate (UFD_2config) of Y2H-CCSB 11.7% 6.1% 0.0% 19.6%

Systematic False Discovery Rate (SFD_2config) of Y2H-CCSB 13.6% 14.5% 0.0% 45.2%

Sampling-sensitivity related

p_1config(Y2H-CCSB) 44.8% 22.1% 5.0% 86.0%

p_2config(Y2H-CCSB) 53.1% 10.0% 29.8% 65.6%

e_1config(Y2H-CCSB) 7.13E-05 2.79E-05 4.93E-05 1.33E-04

e_2config(Y2H-CCSB) 1.18E-04 5.42E-05 8.38E-05 2.17E-04

q_1config(Y2H-CCSB) 3.81E-06 1.99E-06 9.80E-09 6.39E-06

q_2config(Y2H-CCSB) 7.61E-06 3.97E-06 1.97E-08 1.28E-05

E1_2config(Y2H-CCSB) 5.73E-05 3.93E-06 5.23E-05 6.52E-05

I1_twoconfig(Y2H-CCSB) 6.49E-05 4.73E-07 6.40E-05 6.60E-05

Interactome-size

Interactome Size (from Y2H-CCSB, assay sensitivity from pairwise hsPRS v1 expt) 159920 91164 70760 350484

Interactome Size (from Y2H-CCSB, using assay sensitivity from hsPRS v1 pairs positive in CCSB-HI1) 129603 50864 59322 257374

Interactome Size (from Y2H-CCSB, using assay sensitivity from LC-multiple pairs positive in CCSB-HI1) 127958 25200 77253 174006

Interactome Size (from Y2H-CCSB, combined) 130111 32618 73548 199688

Supplementary Table 3 | Estimate of various parameters using Monte Carlo simulations based on experimental data and the mixture model of repeat screens. SFD refers to the systematic false 
discovery rate, UFD refers to the unsystematic or stochastic false discovery rate, E1 refers to the density of interactions reported in a single screen (ignoring stochastic or unsystematic false 
positives) and I1 refers to the density of all pairs (true or false positives) reported in a single screen.
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Universe = All hsPRS v1 pairs

Null hypothesis: Out of all hsPRS v1 pairs, there is no statistically significant correlation between MAPPIT positive pairs and Y2H-CCSB positive pairs

Y2H-CCSB positive Y2H-CCSB negative

MAPPIT positive 7 12 P-value of correlation = 0.01 (significant)

MAPPIT negative 8 65 Therefore, the null hypothesis is wrong, i.e., MAPPIT and Y2H-CCSB are correlated/dependent given all hsPRS v1 pairs

Universe = All hsPRS v1 pairs that are Y2H-supported in the original literature ("PRS-Y2H")

Null-hypothesis: Out of all the hsPRS v1 pairs that are Y2H-supported there is no statistically significant correlation between MAPPIT positve pairs and Y2H-CCSB positive pairs

Y2H-CCSB positive Y2H-CCSB negative

MAPPIT Positive 5 9 P-value of correlation = 0.184 (not significant)

MAPPIT negative 5 23 Therefore, the null hypothesis is correct, i.e., given the set of Y2H-supported hsPRS v1 pairs, MAPPIT and Y2H-CCSB are independent or not correlated

Thus, reducing the set of hsPRS v1 pairs to the subset supported by Y2H removes the correlation between Y2H-CCSB and MAPPIT

Supplementary Table 5 | Calculation of conditional dependence between Y2H-CCSB and MAPPIT.

Nature Methods: doi: 10.1038/nmeth.1280



Supplementary Data 1: Consideration of the correlation between pairs 

scoring positive in Y2H and in MAPPIT assays in the analysis of MAPPIT 

experiments 

In order to compute precision of any given dataset using MAPPIT, we needed to 

benchmark the performance of that dataset in MAPPIT against the performance of the 

hsPRS-v1 and hsRRS-v1 pairs. We investigated the conditional dependence of Y2H-

CCSB and MAPPIT by computing the overlap between hsPRS-v1 pairs that scored 

positive in Y2H-CCSB as well as in MAPPIT (Supplementary Table 5 online). The 

resulting P-value obtained (P = 0.01) indicated that there is a bias for pairs scoring 

positive in Y2H-CCSB to also score positive in MAPPIT. In order to account for this 

dependence, we chose the subset of hsPRS-v1 pairs supported by Y2H assays (PRS-

Y2H) in at least one publication as determined by our recuration of hsPRS-v1-

associated publications. Consistent with the dependence between MAPPIT and Y2H-

CCSB, a greater fraction (34%) of PRS-Y2H pairs scored positive in MAPPIT compared 

to 21% of all hsPRS-v1 pairs scoring positive. We asked if, among the PRS-Y2H pairs, 

there was a further correlation between pairs supported specifically by Y2H-CCSB and 

found no statistically significant correlation (P = 0.184). This indicated that the use of 

PRS-Y2H pairs as a benchmark to compute precision of other Y2H datasets is sufficient 

to account for the conditional dependence between Y2H-CCSB and MAPPIT. 

 

Supplementary Data 2: Examination of screening completeness of search 

spaces and overlap between CCSB-HI1 and MDC-HI1 datasets 
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We evaluated the screening completeness of datasets by comparing their respective 

tested spaces. Using version 44.36f of the ENSEMBL human genome annotation 

(released 03/29/2007) which predicts 22,470 known or novel protein-coding genes, the 

screening completeness of the tested spaces corresponds to: (1) (7,200 x 7200) / 

(22,500 x 22,500) = 10% for Space I tested in the generation of the CCSB-HI1 map, (2) 

(4,000 x 4000) / (22,500 x 22,500) = 3% for Space II (Supplementary Table 9 online) 

tested in the generation of the MDC-HI1, and (3) (2,300 x 2,300) / (22,500 x 22,500) = 

1% for CSS (Supplementary Fig. 1 online), or “common subspace”, (the set of 2,284 x 

2,284 gene loci tested in both Space I and II). Furthermore, only a subspace of 1,463 x 

1,463 gene loci was interrogated using full-length clones in both CCSB-HI1 and MDC-

HI1 (CSS-FL).  

The fraction of the entire CCSB-HI1 and MDC-HI1 datasets made up of common 

interactions corresponds to 0.7% and 0.6% respectively. Upon considering only those 

interactions in the CSS-FL, the fractions of CCSB-HI1 and MDC-HI1 datasets made up 

of common interactions increase to 5.8% and 2.3% respectively. 

 

Supplementary Data 3: Limitations of previous approaches for estimating 

data quality and interactome size 

We present here a unique conceptual framework, the first one to be based on empirical 

protein-protein interaction data directly targeted at quality assessment of interactome 

maps. Previous studies have estimated the precision of existing maps and/or the size of 

interactomes using (i) analysis of the extent to which interacting proteins share other 

biological attributes such as co-expression or shared functional annotation1-5 or (ii) 
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statistical analysis of various features of existing interactome maps including analysis of 

the extent of overlap between two maps6-8. Our approach addresses various limitations 

of these studies. 

Methods that rely on correlation with other biological attributes to estimate 

precision of an interactome map assume that our knowledge of functional annotation is 

complete and unbiased. However, the annotation of most proteomes today is partial and 

suffers various biases, e.g., classes of proteins being particularly scrutinized because of 

their involvement in human disease. In this context, interacting proteins not sharing 

functional annotation should be considered good candidates for novel functional 

discovery rather than potential false positives. Attributing low confidence to true 

interactions that poorly correlate with other biological attributes is likely to artificially 

lower the precision of datasets generated using HT approaches, which are 

sociologically unbiased and not inherently constrained by pre-existing paradigms 

governing functional annotation. On the contrary, using functional annotation for 

evaluating the precision of sociologically biased LC datasets is highly circular since 

shared functional annotations and physical interactions between protein pairs in the low-

throughput literature are inherently dependent on one another4,9. Therefore, higher 

correlation of LC pairs for shared attributes such as co-localization or co-expression 

cannot be interpreted to reflect higher interaction quality. As a case in point, one of the 

studies based on analyzing functional correlation of interacting protein pairs3 suffers 

from the limitations above. This potentially explains their estimate of greater than 50% 

false discovery rates for HT-Y2H yeast maps. Our framework overcomes these 
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limitations by assessing false discovery rates directly using information from protein-

protein interaction assays. 

Methods based on analyzing the extent of overlap between interactome maps6-8 

are free from the above biases as they rely purely on protein-protein interaction data but 

current implementations of this approach have specific limitations. Some studies7,8 used 

a combination of interactions available in various LC interaction databases as the 

reference set for their analysis. Most of these interactions are supported by a single 

publication and, as seen from our MAPPIT experiments (Fig. 3c) as well as from our 

recuration analysis10, their use as a reference set may not be appropriate given a 

potentially higher false positive rate than previously anticipated. To limit the potential 

problems associated with the use of such datasets as reference, we generated a high 

quality reference set (hsPRS-v1) requiring interactions to be supported by multiple 

publications and to pass additional recuration (Fig. 2a). As Gateway-cloned ORFs11 are 

available for every protein involved in our hsPRS-v1, it represents the first positive 

reference set systematically testable using any binary protein-protein interaction 

assay12.  

So far, only one previous study attempted to estimate the precision of human HT-

Y2H maps8. The overlap-based method used in that analysis involves comparison of 

two interactome datasets to each other and to a reference set7. Using this strategy, the 

precision of the CCSB-HI1 dataset9 was estimated to be ~10%, corresponding to a false 

discovery rate of 90%. In striking contrast, we estimated the precision of CCSB-HI1 to 

be ~80%, corresponding to a false discovery rate of ~20%. We speculate that this 

discrepancy could be due to various issues. Although the underlying mathematical 
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method7 used in their study requires that the two datasets used in the overlap-based 

estimation be generated using similar or ideally identical assays, their study8 used the 

CCSB-HI1 dataset together with computationally predicted interaction datasets13,14, 

which are generated using diverse techniques distinct from Y2H. Moreover, another 

requirement of their method is that the reference set not be biased toward either of the 

two datasets being compared7. We argue that this requirement is not met when 

comparing a computationally predicted interactome map with a reference set consisting 

of LC interactions. Indeed, amongst other features, shared functional annotation and/or 

co-expression were used to predict these human interactome maps13,14 and, as we 

discussed above, shared annotation or co-expression, and physical interactions 

reported in LC databases are inherently dependent on one another. All these limitations 

together may have led to overestimating false discovery rates for existing HT-Y2H 

human interactome maps. Our approach to estimate false discovery rates avoids these 

pitfalls by using two different approaches for our estimate, (i) experimentally testing a 

random subset of interacting pairs in an independent assay and (ii) comparing overlaps 

between four homogeneously-derived repeat screens. 

Finally, earlier studies failed to consider one or more of the parameters that 

influence interactome map quality. A recent analysis15 estimated that the human 

interactome network contains ~650,000 interactions by scaling up the number of 

interactions in a given map according to the fraction of the proteome represented in that 

map. This study does not estimate specific quality parameters (precision, assay 

sensitivity and sampling sensitivity), which could significantly affect the resulting 

estimate of interactome size if taken into account. In another scenario, most previous 
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approaches1-3,6-8,16 did not distinguish between sampling sensitivity and assay sensitivity 

when estimating false negative rates. In the sole study that did attempt to distinguish 

between these two parameters17, the estimate of sampling sensitivity and assay 

sensitivity of a given assay is likely to be significantly overestimated. Their analysis is 

restricted to proteins that are assumed to be detectable in a given assay. This is done 

considering only the subset of proteins that are involved in at least one interaction as 

both DB-X fusions (“bait”) and AD-Y fusions (“prey”) in a given interactome dataset. Out 

of all the observed interactions involving this “detectable” subset of proteins, they 

computed the fraction of interactions observed in both configurations (“bait-prey” versus 

“prey-bait”) and assumed that interactions undetected in one of the two configurations 

are owing to a combination of limited sampling sensitivity and assay sensitivity. This 

method does not consider those interactions that are detected in neither configuration in 

a dataset. It is likely that for any assay, a substantial fraction of all true interactions are 

detected only after multiple screens of an assay (as seen from our repeat screens), or 

more strikingly never detectable by an assay (as seen from our hsPRS-v1 experiments). 

Therefore we argue that their estimates of sampling sensitivity and assay sensitivity are 

likely to be significantly overestimated. For example, although our estimate of assay 

sensitivity may also be an overestimate (since the hsPRS-v1 pairs are reported in 

multiple publications, therefore may be more likely to be detectable by current 

experimental methods than would a random set of true interactions), their approach 

would have estimated an assay sensitivity of ~48% for Y2H-CCSB, which is significantly 

higher than the assay sensitivity of ~17% obtained with our approach (Supplementary 

Table 3). While our approach is not perfect, it provides a better estimate of sampling 
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sensitivity and assay sensitivity based on direct experimental data. In addition, our 

approach is the first to estimate two different types of false discovery rates, i.e., 

stochastic and systematic false discovery rates.  

 
Supplementary Data 4: Current status of available human interactome 

maps 

Our results offer a comprehensive picture of the current state and the future potential of 

interactome mapping. We estimate that 1,872 of the reported 2,754 interactions (68%) 

in the CCSB-HI1 dataset and 2,282 out of 3,169 (72%) in the MDC-HI1 dataset are true 

biophysical interactions. Out of the 17,297 LC binary interactions available in the union 

of the BIND, DIP, HPRD, MINT and MIPS databases, 3,321 out of 15,094 (22%) 

interactions in the “LC-Single” (LC interactions supported by a single publication) 

dataset are estimated to be true positives. Taking all three datasets together with the 

2,203 interactions in the “LC-Multiple” (LC interactions supported by multiple 

publications) dataset and given the negligible overlap between the datasets, we 

estimate that out of 23,220 currently reported human interactions, ~9,700 are genuine 

(~42%). Thus, the fraction of interactions identified so far represents 5% to 13% of the 

full interactome, i.e., more than 85% of all interactions remain to be discovered. 

 

SUPPLEMENTARY METHODS 

Generation of a binary interaction Positive Reference Set (hsPRS-v1) and 

Random Reference Set (hsRRS-v1). To generate our human binary interaction 

Positive Reference Set (hsPRS-v1), we started with 17,297 binary literature-curated 

(LC) interactions from five curated databases (BIND18, DIP19, HPRD20, MINT21 and 
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MIPS22), out of which 4,067 pairs were contained in a space corresponding to our 

human ORFeome v1.1 collection11 and tested in the Rual et al. publication9 (referred to 

as LC interactions from “Space I”, the HT-Y2H tested space). These LC interactions 

excluded HT-Y2H interactions reported in the Rual et al. or Stelzl et al. publications. 

From these 4,067 pairs, we chose 188 pairs supported by the highest number of 

publications and curated by the highest number of databases. Systematic recuration of 

all publications thought to support these 188 protein pairs verified 107 direct binary 

interactions between human proteins that were supported by multiple publications, 92 of 

which involved full-length proteins and constituted our hsPRS-v1 (Supplementary 

Table 1 online). The remaining 81 LC pairs were annotated as being supported by one 

or no publication according to our stringent criteria10. Proteins involved in the 92 hsPRS-

v1 interactions exhibit broad cellular localization, suggesting they represent the currently 

known interactome obtained from a wide variety of binary assays. 

A set of 188 hsRRS-v1 pairs was derived by random selection from all pair-wise 

combinations in Space I (see above), after removing known biophysical interactions in 

LC or HT-Y2H datasets (Fig. 2b and Supplementary Table 1 online). These randomly 

chosen pairs should largely be true negative pairs if the size of the interactome is about 

200,000 interactions, the upper bound of interactions estimated from this study. 

 All 506 full-length open reading frames (ORFs) encoding the proteins to be 

tested in both hsPRS-v1 and hsRRS-v1 were transferred by Gateway recombinational 

cloning (Invitrogen) from Gateway Entry clones in the human ORFeome v1.1 

collection11 into MAPPIT and Y2H-CCSB vectors. Thus identical clones are used to test 

the same pairs in different binary interaction assays. 
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Description of datasets whose precision was tested by MAPPIT. The three binary 

interaction datasets are as follows: (i) “CCSB-HI1” dataset9 with 2,754 HT-Y2H 

interactions found using Y2H-CCSB in a single sampling of Space I, (ii) the “MDC-HI1” 

dataset23 with 3,169 HT-Y2H interactions found using a different Y2H approach (Y2H-

MDC) in a single sampling of “Space II” (4,027 x 4,027 gene loci, Supplementary 

Table 9 online), and (iii) LC interactions, which corresponds to the set of 4,067 

interactions curated from the low-throughput literature in the union of the BIND, DIP, 

HPRD, MINT and MIPS databases. Importantly, all 761 corresponding full-length ORFs 

encoding the proteins involved in these pairs selected from the human ORFeome v1.1 

resource11 were transferred individually by Gateway recombinational cloning 

(Invitrogen) into Gateway compatible MAPPIT Destination vectors24,25 and processed as 

described11. 

 

Y2H-CCSB assays. Y2H-CCSB involves reconstitution of the Gal4 transcription factor 

in the yeast nucleus to detect interactions and uses various features of stringency, e.g., 

low-copy plasmids, hybrid protein expression under the control of a constitutive 

moderate promoter and a scoring system based on multiple reporter genes and 

counter-selectable markers26,27. The specific set of experimental and scoring conditions 

of Y2H-CCSB evaluated throughout this study is based on a protocol described 

previously9 with minor changes. Specifically, a single Y2H-CCSB screen consists of two 

steps: (i) testing each DB-X bait against mini-pools of AD-Y preys, and (ii) pair-wise 

retesting of Y2H interactions by mating fresh DB-X bait and AD-Y prey yeast cells. In 
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each step, scoring of the Y2H readouts is performed as follows. The screen starts with 

frozen glycerol stocks of DB-X bait and AD-Y prey yeast cells. Mating is performed on 

solid YEPD plates at 30ºC after which colonies are replica-plated on the following assay 

plates: Sc-L-T-U, Sc-L-U+CYH, Sc-L-T-H+3AT, Sc-L-H+3AT+CYH and YEPD for a !-

galactosidase filter assay. Y2H read-outs are scored four days after replica-plating the 

cells; the four days include velvet-cleaning (one day after spotting) and three additional 

days of incubation at 30ºC after velvet-cleaning. To be considered Y2H positives, the 

cells must grow significantly more on the Sc-L-T-H+3AT than they do on Sc-L-

H+3AT+CYH or grow significantly more on the Sc-L-T-U than they do on Sc-L-U+CYH 

and they must score positive in the !-galactosidase filter assay. If a score cannot be 

confidently attributed (weak phenotype, weak growth difference between the Sc-L-

T+3AT and the Sc-L+3AT+CYH, human error or contamination), the yeast cells are 

processed through a second round of phenotyping tests. If a score cannot be 

confidently attributed in the second round, the yeast cells are considered Y2H 

negatives.  

The precision of the CCSB-HI1 dataset generated using this assay 

implementation was estimated in Fig. 3c and the sampling sensitivity of a single Y2H-

CCSB screen performed using this assay implementation was estimated in Fig. 3e. 

Finally, as described above, a single Y2H-CCSB screen consists of two independent 

mating experiments and a protein pair needs to score positive in each of these two 

experiments in order to be reported positive in the screen. Similarly, in the hsPRS-

v1/hsRRS-v1 pair-wise mating experiments, hsPRS-v1 or hsRRS-v1 pairs need to show 

a positive signal in at least one configuration in both independent pair-wise mating 
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experiments to be scored positive. Moreover, we assume that pair-wise mating 

experiments operate at or near full sampling sensitivity since such experiments 

overcome losses due to pooling, limited selection of positives and sequencing. 

Therefore, we assume that the fraction of hsPRS-v1 pairs scoring positive in the pair-

wise mating experiment in Fig. 2f reflects the assay sensitivity of the specific version of 

Y2H-CCSB described in the above paragraph. 

In the alternate Y2H-CCSB protocols shown in the x-axis of Fig. 2d, testing of 

hsPRS-v1 and hsRRS-v1 also starts with frozen glycerol stocks. Mating is performed in 

liquid YEPD, spotted on Sc-L-T plates and incubated for ~20 hours at 30ºC after which 

colonies are replica-plated on duplicate sets of the following assay plates: Sc-L-T-U, Sc-

L-U+CYH, Sc-L-T+ 2% 5-FOA, Sc-L-T+3AT, Sc-L+3AT+CYH and YEPD for a !-

galactosidase filter assay. To be considered Y2H positive in this protocol, a colony 

needs to show a clear positive signal on at least two independent reporter assays in a 

cycloheximide-sensitive manner26, and this result has to be reproducible in the duplicate 

sets of assay plates. Moreover, to be counted as a positive in the “-URA positive” 

protocol, a colony needs to show a positive signal on Sc-L-T-U plates. 

 

MAPPIT experiments. MAPPIT detects binary physical interactions by reconstitution of 

a membrane-bound receptor in mammalian cells28 and measurement of downstream 

luciferase reporter activity. MAPPIT experiments were performed essentially as 

described29. MAPPIT results are considered scorable if: (i) LR cloning is successful for 

both bait and prey constructs; (ii) expression of the bait hybrid protein is sufficient, i.e., 

when the receptor-bait is able to generate a fold-induction value (mean value of the 
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ligand-stimulated cells divided by the mean value of the non-stimulated cells) higher 

than ten when tested in combination with a prey construct (TRIP13) which interacts with 

the chimeric receptor independently of the bait; and (iii) the bait and the prey proteins 

are considered to interact specifically, i.e., when the receptor-bait or gp130-prey 

generate a fold-induction value lower than twenty when tested in combination with an 

irrelevant prey protein (amino acids 261-708 of SV40 large antigen T) or an irrelevant 

bait protein (chimeric receptor without bait), respectively. Interactions that failed any of 

these conditions were counted as “not applicable” (NA). The basic output of MAPPIT is 

the “Experiment-to-Control Ratio” (ECR), defined as the fold-induction value with bait 

and prey, divided by the fold-induction value with bait and irrelevant prey, or prey and 

irrelevant bait. The ECR has to be higher than ten for a trial to be reported positive. The 

experiment was performed in both configurations (receptor-X vs. gp130-Y and receptor-

Y and gp130-X) and in two independent pair-wise trials, giving four distinct outputs 

(ECR) for each tested pair. Pairs were scored positive if they reported positive in at 

least one configuration in both pair-wise trials. 

 It is to be noted that the results of the hsPRS-v1 pairs in MAPPIT primarily serve 

as a reference relative to CCSB-HI1, MDC-HI1 and LC for measuring precision of these 

datasets. Since the results from the hsPRS-v1 and hsRRS-v1 pairs were used in order 

to derive suitable experimental conditions (ECR score thresholds) for scoring a positive 

in MAPPIT, the absolute fraction of the current hsPRS-v1 pairs scoring positive in 

MAPPIT reflects only gives a gross estimate of the assay sensitivity; a more 

independent estimate of the assay sensitivity of MAPPIT would require testing a 

separate set of PRS pairs.  
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Calculation of precision from MAPPIT experiments. We calculate the precision of 

the datasets using MAPPIT as follows. For every 100 pairs in each interaction dataset 

(LC, CCSB-HI1 or MDC-HI1), let Iobs be the number of observed positives in MAPPIT for 

pairs in that dataset. If I+ is the number of true positives in a particular consolidated 

(after adjusting for various biases) dataset, f+ is the false positive rate of MAPPIT 

(obtained as the fraction of hsRRS-v1 pairs reported positive), and (1-f-) is the fraction 

of Y2H-supported hsPRS-v1 pairs that report positive in MAPPIT, then the following 

equation holds true: 

(1.1)  Iobs = (100 – I+) f+  +  I+ (1 - f-)   

Substituting the values for Iobs, f+ and f- above, we can solve for I+, which represents the 

number of true positives in the interaction dataset under consideration, and 

consequently provides an estimate of the precision or percentage of the false positives 

(i.e., 100 - I+) in that dataset. 

(1.2) 
+!

+

+
!!

!
=

ff

fI
I obs

1

100
 

For example, 51/188 CCSB-HI1 pairs CCSB-HI1, 14/42 PRS-Y2H pairs and 3/185 

hsRRS-v1 pairs score positive in MAPPIT. Therefore the distributions provided as 

inputs for the Monte Carlo simulations (see below) in this case are given by Iobs = 

Beta(52,138) , f- = 1 – Beta(15,29) and f+ = Beta(4,183). 

It is worth noting that in the experiment design and calculations described above, 

we use MAPPIT to test protein pairs that have been reported positive by a Y2H assay 

(e.g., CCSB-HI1 interactions). Therefore, to be precise, we should make use of the 

MAPPIT false positive and negative rates over protein pairs that are reported positive by 
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the same Y2H assay. Therefore, we restricted the positive reference set, hsPRS-v1, to 

interactions that were reported positive by Y2H. Similarly, for the random reference set, 

hsRRS-v1, we would need protein pairs that are true non-interacting pairs that, at the 

same time, are reported positive by Y2H. The construction of such a negative set is very 

difficult. Yet, in practice such a set may not be needed. Only the subset of non-

interacting protein pairs reporting positive by both Y2H and MAPPIT would affect our 

estimate of precision. In order for a non-interacting protein pair to report positive in both 

assays, it almost certainly needs to be a systematic false positive of each assay rather 

than a stochastic false positive: Stochastic false positives can apply to every non-

interacting pair and arise due to technical/human errors while performing an assay once 

but report negative upon repeated testing, or upon testing in another assay. Systematic 

false positives, on the other hand, are usually specific non-interacting protein pairs that 

persistently report positive in an assay. Therefore, among a given set of non-interacting 

pairs, the subset of pairs that are stochastic false positives of Y2H, or the subset of 

pairs that are systematic false positives of Y2H but not MAPPIT, would not affect our 

precision estimate. Among the ~200 Y2H positives tested by MAPPIT, we assume that 

there is a negligible number of pairs that are systematic false positives of both Y2H and 

MAPPIT, and under this assumption, the false positive rate estimated using hsRRS-v1 

and the resulting estimate of precision are good approximations. 

 

Calculation of average number of interactions reported after m ‘repeat screens’. 

To compute the average number of reported interactions after m, m=1,..,M, screens we 

use as input data the number of interactions Nn reported positive n, n=1,..,M, times in M 

Nature Methods: doi: 10.1038/nmeth.1280



screens. Let Pr(l|n,m,M) be the probability that an interaction is reported l times after the 

first m screens, given that it was reported positive n times in the M screens. The 

expected number of reported interactions after m screens is given by 

(2.1) 

! 

E
m

= N
n

Pr(l | n,m,M)
l=1

max(n,m )

"
n=1

M

"  

Furthermore, given an interaction reported positive n times in M screens, the probability 

that it is reported positive l times after the first m screens is given by the hypergeometric 

distribution 
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Modeling of repeat screens. The sampling sensitivity of an assay, measured as the 

fraction of interactions detected per screen of that assay, can be modeled using repeat 

screens. For Y2H assays, one source of screen-to-screen variation is yeast mating, the 

success rate of which can vary greatly. Bait/prey protein expression fluctuations and 

other sources of cellular noise, or failure of PCR or sequencing of interaction sequence 

tags (ISTs), may also result in variability. These unsystematic fluctuations are modeled 

by a sampling sensitivity parameter p, the probability to report positive in one screen. 

When repeating a screen M times the probability to obtain n positives is given by the 

binomial distribution 

(3.1) 
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Another fluctuation is that different protein pairs may have dissimilar sampling 

sensitivity. Firstly, we consider a mixture model where we assume that the search 

space consists of a mixture of two classes of pairs: a fraction e of interacting proteins 

and 1-e of non-interacting proteins. When an interacting pair of proteins reports positive, 

we define it as a true positive (TP), otherwise it is a false negative (FN). When a non-

interacting pair reports positive, we define it as a false positive (FP). If we assume a 

constant sampling sensitivity p across all interacting pairs q and across all non-

interacting pairs, then equation (3.1) gets replaced by 

(3.2) 
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n
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More generally we can assume in our mixture model that there are K sampling 

sensitivity classes of interacting protein pairs obtaining 

(3.3) 
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where 

(3.4) 

! 

e = e
i

i=1

K

"  . 

In principle there could be more than one class of false positives. However, 

because the rate of false positives q happens to be tiny they cannot be differentiated. 

When q is tiny (qM<<1), false positives only contribute to protein pairs reported positive 

once, with a contribution approximated by (1-e)q(1-q)M-1
!(1-e)q. When there are 

different classes of false positives we obtain the same result, with q representing the 

average stochastic false positive rate and, as anticipated, we cannot differentiate them. 
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Thus, without loss of generality, we assume a single sampling sensitivity class for non-

interacting proteins and interpret q as the average stochastic false positive rate. 

One HT-Y2H screen consists of testing a search space S of protein pairs for 

protein-protein interactions. M HT-Y2H screens consist of repeating the same screen 

over the search space M times. The outcome is N0 protein pairs never found positive, 

N1 pairs found positive once, N2 pairs found positive twice, …, NM pairs found positive M 

times, where 

! 

N
n

n= 0

M

" = S . The likelihood of a particular outcome is given by the 

multinomial distribution 

(3.5) 
  

! 

Pr N e, p,q,K( ) =
S!

N
0
!LNM !

" n e, p,q,K( )[ ]
Nn

. 

We could proceed by computing the maximum likelihood estimate (MLE) for the model 

parameters given the data N. However, the MLE can bias the parameter estimation. A 

preferred strategy would be to also consider nearly optimal fits, producing intervals of 

confidence for the model parameters. Thus, we use a Bayesian approach30 and 

compute the posterior distribution 

(3.6) 

! 

Pr e, p,q,K |N( ) =
Pr N e, p,q,K( )Pr e, p,q,K( )

dedpdqPr N e, p,q,K( )" Pr e, p,q,K( )
 , 

for the model parameters, given the data N and a prior distribution Pr(e,p,q,K). 

For the prior distribution we assume independence between the model parameters e, p, 

q and K and a uniform distribution on the interval [0,1] for e, p and q. The prior 

distribution for K takes into account the model complexity. For a given K there are 2K+1 

independent parameters (e,p,q). Because a model with K>1 contains models with 

smaller K as particular examples, then the larger the K value the better the model fits 

the data. On the other hand, larger K values greatly increase the model complexity. To 
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account for this increase in model complexity we use the Akaike information theoretical 

criterion (AIC)31 and assume 

(3.7) 

! 

Pr(K) = Ae
"#  independent parameters

= Ae
"(2K +1) , 

where A is a normalization constant such that 

! 

Pr(K)
K=1

"

# =1. Following these assumptions 

for the prior distribution, from (3.7) we obtain  

(3.8) 
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where 

(3.9) 
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is the partition function. In essence, (3.8) represents a probability distribution in the 

space of parameters (e,p,q,K) given the data N and our assumptions for the prior 

distribution. Thus, the expectation of a certain variable x(e,p,q,K) is given by 

(3.10) 

! 

E x[ ](N) = de dp" dq"" Pr e, p,q,K |N( )
K=1

#

$ x e, p,q,K( ) . 

The magnitudes reported in the main text are the expectation of the number of 

interactions in the search space 

! 

e = e
i

i=1

K

" , the fraction of pairs ei and sampling 

sensitivity pi on each class of true interacting proteins, the rate of false positives q, and 

standard deviations. Furthermore, the relative contribution of each model with K’ 

classes is given by

! 

E "
K # K [ ] , where 

! 

"
K # K 

=1 when K=K’ and zero otherwise is the 

Kronecker delta symbol. 

The calculation/computation of these averages is quite challenging. The reported 

results were obtained using the following approximations: (i) Replace the integral over pi 
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by a sum with resolution "p=0.01. (ii) For each K and set of pi restrict the average over 

ei and q to the MLE. (iii) Truncate the sum over K at K=1 or K=2. 

 The model is run on interaction data at the level of distinct clone pairs. To 

normalize the resulting estimated parameters to the gene locus level (i.e., to consider 

parameters assuming one clone per gene), we consider the following. ei(clone pair) 

represents a fraction of pairs, so ei(gene pair) is the same as ei(clone pair). In theory, 

pi(gene pair) is potentially greater than pi(clone pair) if there are multiple clones for the 

bait or prey associated with the interaction geneA-geneB. This is because we can 

detect the same interaction at the gene level from different combinations at the clone 

level. Simplistically, if r is the total number of pairs at the clone level divided by the total 

number of pairs at the gene level, then pi(gene pair) equals r times pi(clone pair). 

However, this is valid only under the assumption that for any given interacting gene pair, 

all interactions at the clone level (i.e., all clone pair combinations) are detectable, which 

is not true. Thus in general the correction factor between pi(clone pair) and pi(gene pair) 

will be somewhere between 1 and r. Since, here r (rCCSB = 1.09 and rMDC = 1.22) is not 

so different from 1, we report pi(clone pair) in Table 1. This approximation does not 

affect the calculation of the size of the human binary interactome, since we use the 

value of ei (which is independent of the number of clones pairs per gene pair) in the 

calculations.  

After preliminary analysis it became clear that two classes of true positives 

represent a significantly better description of our repeated screen data than just one. 

Therefore, we extended the sum over K till K=2. The estimated model parameters are 
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shown in Supplementary Table 3 online. Fig. 3e shows the predicted expected 

number of positives as a function of the number of screens. 

 

Estimating magnitudes of various parameters and the resulting interactome size. 

To estimate the human interactome size we need to take into consideration the 

following factors: 

 

(i) Estimation of the sampling sensitivity “p”, and  the fraction of interactions that would 

be reported as positive interactions after performing a large number of screens of an 

assay, “e” 

This fraction represents the maximum number of interactions expected to be reported 

positive by a given technology at full sampling sensitivity relative to the search space 

size and is estimated from the model of the repeated screens. The calculation of “e” 

thus takes into account the sampling sensitivity as measured from the model of the 

repeated screens. The value of e obtained with the model is based on repeated screens 

performed in a single configuration (DB-X vs. AD-Y) of the search space. To estimate 

e2config, which refers to the density of detectable interactions upon performing the 

screens in both configurations (DB-Y vs. AD-X), we considered the following.  

Let v be the probability that an interaction is detectable in both configurations, 

p1config the probability that an interaction is observed in a single configuration in one 

screen, p2config the probability that an interaction is observed in at least one of the two 

configurations in one screen, e1config the density of interactions detected after a large 

number of screens each performed in a single configuration and e2config the density of 
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interactions detected after a large number of screens each performed in both 

configurations. Then 

(4.1) configconfigconfig pvpvp 1

2

12 )1(])1(1[ !+!!=  

Here the first term on the right hand side of the equation refers to the probability that an 

interaction is detectable in both configurations times the probability that it is observed in 

at least one configuration in one screens. The second term refers to the probability that 

an interactions is detectable in only one configuration times the probability that it is 

observed in one screen and one configuration. Thus, 

(4.2) )1( 1112 configconfigconfigconfig pvppp !+=  

 

Similarly, e1config and e2config are related by the equation 
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The first term on the right hand side refers to the density of interactions detectable by 

both configurations that are found in at least one configuration upon saturation. The 

second term refers to the density of interactions detectable in only one configuration 

that are detected upon saturation. Thus, 

(4.4)  
v

e
e

config

config
+

=
1

2
1

2
 

To compute v, we used information from the CCSB-HI1 (Rual et al.) screen where 

protein pairs were tested in both configurations. If L was the number of proteins in the 

Space I and Nbothconfig is the number of interactions found in both configurations in this 

screen, then  
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The corresponding density of interactions detectable in both configurations would then 

be 

(4.6) 2

12

2

)(
)( pve

L

RualN
RualE config

bothconfig

bothconfig ==  

Thus,  

(4.7)  
2

1

)(

pe

RualE
v

config

bothconfig
=  

In CCSB-HI1, 97 interactions where found in both configurations among a search space 

containing 7194 genes (i.e., 7195*7194/2 gene pairs). Therefore Ebothconfig(CCSB-HI1) 

equals 3.75E-6. Substituting this into equations 4.7 and 4.4 we can obtain an estimate 

of e2config , which is our starting point for calculating the size of the interactome. 

 

(ii) Estimation of the assay sensitivity of Y2H-CCSB 

In order to provide the best possible estimate of assay sensitivity of Y2H-CCSB, we 

used three measurements and merged them into a single estimate using the inverse 

variance weighted method, which combines independent estimates of the same variable 

by weighting each estimate according to the inverse of its variance32. 

1) A Y2H pair-wise experiment can be seen as a saturated screen, as it overcomes the 

losses due to pooling, limited selection of positives, sequencing and filtering. The 

proportion of hsPRS-v1 in a pair-wise Y2H test is used as a first measurement of assay 

sensitivity. We scored 15 out of 92 hsPRS-v1 pairs as positive in an independent pair-

wise test. 
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2) The proportion of hsPRS-v1 pairs detected in our CCSB-HI1 HT screen reflects the 

overall sensitivity of Y2H-CCSB, therefore we can use this proportion to estimate assay 

sensitivity, since assay sensitivity = overall sensitivity / sampling sensitivity. We found 9 

out of 92 hsPRS-v1 pairs in CCSB-HI1. 

3) We considered a set of 1,526 human LC interactions supported by multiple 

publications from a more recently updated (January 200733) version of LC interaction 

databases. The proportion of these LC-multiple pairs detected in CCSB-HI1 reflects the 

overall sensitivity of Y2H-CCSB, therefore we can use this proportion to estimate assay 

sensitivity, since assay sensitivity = overall sensitivity / sampling sensitivity. We found 

149 out of these 1,526 LC-multiple pairs in CCSB-HI1. 

We used the resulting beta distributions Beta(16,78), Beta(10,84) and 

Beta(140,1378) as independent inputs into a Monte Carlo simulation (see below) in 

order to get three independent estimates of assay sensitivity and three corresponding 

estimates of interactome size. We then obtained a single combined estimate of the 

assay sensitivity and interactome size using the inverse-variance weighted method 

mentioned above. If SFN2config is the number of undetectable interactions relative to the 

number of true interactions upon testing pairs in both (bait-prey and prey-bait) 

configurations, then our single combined estimate of assay sensitivity as obtained 

above corresponds to (1-SFN2config). 

 

(iii) Estimation of stochastic and systematic false discovery rates of Y2H-CCSB 

If FD2config is the combined estimate of systematic and stochastic false discovery rates 

upon testing pairs in both configurations, SFD2config is the systematic false discovery rate 
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(i.e., number of systematic false positives relative to the number of interactions reported 

positive upon testing pairs in both configurations) and UFD2config is the stochastic (or 

unsystematic) false discovery rate (i.e., the number of stochastic false positives relative 

to the number of reported interactions upon testing pairs in both configurations), 

 (4.8) configconfigconfigconfig SFDUFDUFDFD 2222 )1( !+=  

Given that MAPPIT as used in our study reflects an assay independent from Y2H-

CCSB, both systematic and stochastic false positives in a given dataset should report 

negative to a similar extent in MAPPIT. Therefore, the false discovery rate measured 

from the MAPPIT experiments is a combined estimate of systematic and stochastic 

false discovery rates (i.e., FD2config). The model of the repeat screen data estimates the 

stochastic false positive rate q as the fraction of non-interacting pairs that are reported 

positive. From this we obtain the stochastic (or unsystematic) false discovery rate, 

UFD2config as  

(4.9)   
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Thus substituting the value of UFD2config from equation 4.9 and the value of FD2config from 

the MAPPIT experiment results into equation 4.8, we can obtain the value of SFD2config. 

 

(iv) Estimation of the size of the human interactome 

The size of the entire human proteome search space assuming one splice isoform per 

gene (i.e., ignoring splice variants). If N is the number of predicted genes in the human 

genome, the size of the entire search space is given by N2. 
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We denote by e0 the interactome size relative to the search space size. Among 

those interactions only a fraction e0(1-SFN2config) are expected to be uncovered by a 

given technology with assay sensitivity 1-SFN2config. On the other hand, among the 

interactions reported positive after repeated screens using a given assay, only a fraction 

e(1-SFD2config) is expected to be true interactions, where SFD2config is the systematic 

false discovery rate of that assay. Because these two expected values should coincide 

we obtain 

(4.10)  e0(1-SFN2config) = e2config (1-SFD2config) 

from which it follows 

(4.11)  e0 = e2config (1-SFD2config)/(1-SFN2config) 

Substituting the values of e2config (from equation 4.4), SFN2config (from the hsPRS-

v1 experiments) and SFD2config (from equation 4.8) into equation 4.11, we compute the 

expected size of the human interactome.  

The interactome size computed here is likely to be an under-estimate because (i) 

our measurement of Y2H-CCSB assay sensitivity may be an overestimate given that 

our hsPRS-v1 pairs are composed of interactions found in multiple experiments in the 

original literature, (ii) we ignore splice variant complexity. 

 

Monte Carlo Simulations of all reported parameters. We perform Monte Carlo 

simulations to compute the distribution of different magnitudes which are indirectly 

estimated from the experimental data, i.e., precision of a given assay such as Y2H-

CCSB, sampling sensitivity of Y2H-CCSB, assay sensitivity of a given assay, or the size 

of the human interactome.  
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The distribution of the probability pi that an interaction from dataset i [i=hsPRS-

v1, PRS-Y2H, hsRRS-v1, CCSB-HI1, MDC-HI1, MDC-HI1 (Same, FL), LC, LC (Single, 

Y2H, FL)] is reported positive in a given assay (Y2H-CCSB or MAPPIT) is estimated 

from the observation of ni positive pairs among Ni tested pairs. In the following, we omit 

the index i and the results apply equally to pairs from any dataset. The likelihood to 

observe these n positives after testing N pairs is given by a binomial probability 

distribution with probability p as: 
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Furthermore we assume a uniform prior distribution for p in the interval between zero 

and one. Given the likelihood from the binomial distribution and prior p, from the Bayes 

theorem we obtain the posterior distribution as 
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where the numerator is the product of the probability density of the prior and the 

likelihood given by the binomial, and the integral in the denominator normalized the 

distribution so that the area under the curve equals unity. Simplifying this expression we 

obtain that p follows a beta distribution beta(p;n+1,N-n+1) since the probability density 

function of the beta distribution is given by 
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In a given iteration of the simulation, we use the beta distribution above to obtain a 

value for the probability of hsPRS-v1 or hsRRS-v1 pairs scoring positive in Y2H-CCSB 

and the probability of hsPRS-v1, PRS-Y2H, hsRRS-v1, LC, LC (Single, Y2H, FL), MDC-

HI1, MDC-HI1 (Same, FL) or CCSB-HI1 pairs scoring positive in MAPPIT. These 

simulated values are used to compute precision of LC, MDC-HI1 or CCSB-HI1 pairs. 

We generate 10,000 random values for the parameters p(PRS-Y2H), p(hsRRS-v1) and 

p(CCSB-HI1) from the beta distribution. For each value of p(PRS-Y2H), p(hsRRS-v1) 

and p(CCSB-HI1), we compute precision(CCSB-HI1) using the equation 1.1 (as 

described above) and using all the 10,000 precision(CCSB-HI1) values we obtain the 

histogram of precision(CCSB-HI1), mean, empirical standard deviation and empirical 

95% confidence intervals. These values are reported in Supplementary Table 3.  

The distribution of parameters characterizing sampling sensitivity and stochastic-

false positive rates are obtained from the analysis of the repeat screens data as 

described above in Supplementary Methods from which 10,000 values are sampled at 

random in the Monte Carlo simulations. In each iteration of the simulation, the value of 

all these parameters are then combined according to equation 4.11 in order to compute 

a value for the size of the human interactome.  
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